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A B S T R A C T

Modeling the dynamics characteristics in functional brain networks (FBNs) is important for understanding the
functional mechanism of the human brain. However, the current works do not fully consider the potential
complex spatial and temporal correlations in human brain. To solve this problem, we propose a temporal
graph representation learning framework for brain networks (BrainTGL). The framework involves a temporal
graph pooling for eliminating the noisy edges as well as data inconsistency, and a dual temporal graph learning
for capturing the spatio-temporal features of the temporal graphs. The proposed method has been evaluated in
both tasks of brain disease (ASD, MDD and BD) diagnosis/gender classification (classification task) and subtype
identification (clustering task) on the four datasets: Human Connectome Project (HCP), Autism Brain Imaging
Data Exchange (ABIDE), NMU-MDD and NMU-BD. A large improvement is achieved for the ASD diagnosis.
Specifically, our model outperforms the GroupINN and ST-GCN by an average increase of 4.2% and 8.6% on
accuracy, respectively, demonstrating its advantages in comparison to the state-of-the-art methods based on
functional connectivity features or learned spatio-temporal features. The results demonstrate that learning the
spatial–temporal brain network representation for modeling dynamics characteristics in FBNs can improve the
model’s performance on both disease diagnosis and subtype identification tasks for multiple disorders. Apart
from performance, the improvements of computational efficiency and convergence speed reduce training costs.
1. Introduction

The brain is an exceptionally complex system and understanding its
functional organization is the goal of modern neuroscience. By measur-
ing the time-varying changes of blood-oxygen-level-dependent (BOLD)
signal at rest, resting-state functional magnetic resonance imaging (rs-
fMRI) becomes a powerful approach developed to characterize the
brain activities and explore the intrinsic functional organization in the
research of cognitive neuroscience, medical and clinical applications
[1,2].

In our study, we focus on modeling rs-fMRI data as a brain network,
where the nodes denote the brain regions and the edges represent the
inter-regional functional associations. It is a graph classification task,
which aims to predict the label of a given brain network. The brain
networks can be analyzed with various graph learning-based methods.
Motivated by the success of deep learning on grid data, graph con-
volutional networks (GCNs) [3] have been proposed to generalize the

∗ Corresponding author at: Computer Science and Engineering, Northeastern University, Shenyang, China.
E-mail address: caopeng@cse.neu.edu.cn (P. Cao).

convolution operation on arbitrary graphs to address graph structure
data. Recently, GCNs have achieved state-of-the-art results for learning
the latent brain network representation for the classification in different
neuro-disorders [4,5]. In this work, we focus on the analysis of brain
networks with the GCNs methods.

Most of the related works construct a static brain network for
analysis by estimating the correlations from BOLD signals, but they
did not consider the spatio-temporal intertwining pattern in the brain
networks [2,6,7]. Recent studies have shown that dynamic functional
connection (FC) analysis provides valuable information for understand-
ing the underlying functional brain activities [8,9]. Two recent works
[10,11] consider both the spatial and temporal characteristics in the
brain network for capturing spatio-temporal information. More specif-
ically, a spatial–temporal graph convolutional network (ST-GCN) is
proposed for learning the dynamic brain networks [10]. In [11], an
end-to-end deep neural network combining temporal convolutional
vailable online 6 January 2023
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Fig. 1. Illustration of different brain network analysis methods with the input of BOLD signals in the rs-fMRI. (a) Most of the previous methods typically use Pearson’s correlation
ased functional connectivity (FC) to characterize the temporal relationships between different brain regions during resting states, under an implicit assumption that FC of the
uman brain is stationary throughout the whole fMRI recording period. (b) The method usually assumes that the functional structure of brain network is constant (i.e., temporally
tationary) throughout the recording period in rs-fMRI. It only concentrates on the one-dimensional BOLD series with TCN or LSTM models, but fails to consider the dynamic
patial dependency. (c) It learns the features from each functional connectivity network constructed by a segment of BOLD series into a high-level embedding independently, and
hen model the dynamic embeddings into a final representation. Although it models the dynamic property of functional connectivity networks, the major limitation is that the
wo-stage procedure is based on a clear separation of spatial and temporal feature learning stages, neglecting the temporal interaction of the spatial regions. (d) Our BrainTGL
s designed to capture both the temporal dependency patterns from both the rs-fMRI time series and the dynamic graph structure by sufficiently taking advantage of sequential
nformation conveyed in dynamic FC networks that could be informative to improve the diagnosis performance.
etworks (TCNs) and GCNs is proposed to learn both the spatial and
emporal components in rs-fMRI. Although they consider modeling
he representation of the dynamic BOLD signals in the brain network
10,11], the graph structure in the network is still static since they ig-
ore the dynamic variation with respect to the structure information in
he brain network. These methods cannot capture the dynamic spatial
elationships between the brain regions, which are crucial for under-
tanding human actions. When modeling the dynamic brain network,
oth the BOLD signals in each brain region and the global topological
orrelation among the brain regions are very important for brain net-
ork analysis. However, most existing deep learning methods working
n the rs-fMRI analysis fail to consider both aspects simultaneously.

Capturing the temporal dynamics of the brain network is challeng-
ng, because it is difficult to simultaneously model temporal depen-
ency patterns from BOLD series and temporal structure changes of
raph structure over time. To solve those challenges, we formulate the
BNs as dynamic graphs, and propose a dynamic graph embedding
earning framework for brain networks analysis, named BrainTGL,
y exploiting temporal graph information. More specifically, we first
onstruct dynamic brain network series. Then, we propose an attention
ased graph pooling method and incorporate it into GCN. The pool-
ng is able to preserve the critical graph structure by enhancing the
mportant edges and removing the noisy edges. During the training of
CN, the node embedding is updated by aggregating information from

he correlated neighbors according to the graph structure. Therefore, a
lean and accurate graph structure is obtained to benefit for the GCN in
earning node embeddings. Meanwhile, the pooling allows to determine
ifferent weights to edges within a graph, hence the final graph-
evel representation is informative for the GCN classifier. There exists

co-occurrence relationship between spatial and temporal domains.
oreover, we propose a dual temporal graph learning (DTGL) module

o simultaneously model the dynamic information by capturing the
patio-temporal representation from two aspects in the coarsened and
ynamic graphs. Furthermore, a multi-skip combination is introduced
o extend the temporal span and hence ease the optimization process.

In addition to the graph classification task, graph clustering aims
o explore the inherent subtypes of the same disorder without any
upervision class label. The heterogeneity of brain disorders indicates
hat subjects may belong to different subtypes of the same disor-
er, which produces diverse graph structures and data distribution.
owever, subtypes of psychiatric disorders are primarily distinguished
y clinical symptoms, ignoring the essential features of the disorder
2

12–14]. It is essential to develop an unsupervised clustering analysis
framework for the discovery of patient disease subtypes, which has
the potential to transform personalized medicine. In particular, with
the BrainTGL for temporal graph embedding learning, we design a
pseudo-label-based framework with a clustering-based label generation
scheme.

We comprehensively evaluated BrainTGL on four real clinical ap-
plications covering: gender classification on the HCP dataset [15],
ASD diagnosis on the ABIDE dataset [16], the diagnosis and subtype
analysis of MDD and BD on the center NMU dataset. The results
demonstrate the advantages of the proposed framework compared to
existing state-of-the-art brain network analysis methods.

With BrainTGL, our contribution is threefold:
1. Capturing the spatio-temporal dynamics in functional brain net-

works is important for neurological disorders diagnosis and biomarkers
exploitation. To solve it, we propose a dynamic brain network em-
bedding learning framework by combining the advantages of GCN and
LSTM to model the dynamic associations with an end-to-end scheme,
which effectively models the co-occurrence relationships between brain
regions across the dynamic time segments.

2. How to extract the critical graph structure in brain networks
is still a challenging problem. To deal with it, we propose a graph
structure learning with attention based graph pooling to remove the
irrelevant FCs from the group level, which boosts the performance of
the following temporal graph classification procedures.

3. Comprehensive evaluations on multiple datasets demonstrate that
our method consistently outperforms state-of-the-art models for both
the graph classification (supervised learning) on the tasks of gender
classification, ASD diagnosis, MDD diagnosis and BD diagnosis, and
graph clustering (unsupervised learning) on the tasks of MDD and BD
subtype identification.

The rest of the paper is organized as follows. We discuss the related
work on brain disease diagnosis in Section 2. A detailed mathematical
formulation and framework description of BrainTGL and its variant
clustering method (BrainTGL-C) are provided in Section 3. In Section 4,
we evaluate the performance of the BrainTGL and BrainTGL-C by
extensive experiments on the ABIDE, HCP and Center NMU datasets.
Finally, we present the limitations and future works in Section 5, and
conclude this work in Section 6.

2. Related work

Many efforts have been devoted to the automated brain diagnosis
based on rs-fMRI. Current work is mainly divided into two directions:

static brain network analysis and dynamic brain network analysis.



Computers in Biology and Medicine 153 (2023) 106521L. Liu et al.
Fig. 2. The overall architecture of our proposed BrainTGL. (a): The construction of the dynamic graph series. (b): An attention based graph pooling is proposed to achieve temporal
coarsened graph series. (c): A dual temporal graph learning is developed to sufficiently capture the temporal characteristics of the graph series from the BOLD signals level and
graph level, respectively.
2.1. The static brain network analysis methods

Previous studies have successfully applied machine learning meth-
ods to identify cognitive impairment by constructing the static func-
tional connectivity networks based on pair-wise temporal correlation
between brain regions, as illustrated in Fig. 1(a)(b). For example, Jie
et al. [6] introduced the graph-kernel based method that identified
patients from normal controls by designing a measure to compute the
topological similarity between the FCs. The major issue is that the
feature extraction and classification are independent, which hinders
the final performance. Many works [17–19] establish the CNN-based
model to extract hierarchical topological features of brain networks for
brain disease identification. Although these works overcome the limi-
tations of feature extraction of traditional machine learning methods,
the structure information between brain regions was ignored and they
cannot capture the high-level topological representations. The struc-
ture information has been proven to be important for brain network
learning [20].

In recent years, there has been an increased interest in graph
convolution networks (GCNs). GCNs combine the advantages of both
graph theory and deep learning approaches and have the potential
to learn spatial representations in non-Euclidean domains. Recently,
several studies have introduced GCN into the field of fMRI analysis,
and have demonstrated the effectiveness of GCN-based models for brain
disease classification. For example, Eslami et al. [7] proposed a joint
learning method, which consists of an autoencoder for the reconstruc-
tion task and a single layer perceptron for ASD classification. Li [21]
proposed an ensemble framework with hierarchical graph convolution
network, which can capture intrinsic correlations among subjects to
improve graph embedding learning for disease diagnosis. Although
these methods have shown a potential advantage in improving the
diagnosis performance for brain disease, they ignore capturing the
temporal representations in rs-fMRI.

2.2. The dynamic brain network analysis methods

Recently, many works [8,9] suggest that the rich temporal rep-
resentations in rs-fMRI benefits the embedding learning for disease
classification. The dynamic FC can reliably monitor the changes of
macroscopic neural activities underlying cognitive and behavioral de-
cline. In an early stage, traditional machine learning methods have
been widely used in the dynamic FC modeling and have shown sig-
nificant success. For example, Monti et al. [22] proposed a smooth,
incremental graphical lasso estimation (SINGLE) algorithm that re-
gards fMRI time-series data as input to infer dynamic brain networks
for each subject. Jie et al. [23] developed a manifold regularized
3

multi-task feature learning framework to extract discriminative features
from the dynamic FCs, and employed a multi-kernel SVM to diagnose
Alzheimer’s disease.

However, the traditional machine learning methods cannot suffi-
ciently capture the potential information. Hence, deep learning models
have recently emerged in the brain network analysis, and demonstrated
the superior performance in the modeling dynamic association. Gadgil
et al. [10] developed a spatial–temporal graph convolutional network
(ST-GCN) by combining the functional connectivity and the temporal
representations in BOLD signals leveraging the 1D convolutional ker-
nels. Azevedo et al. [11] proposed a spatial–temporal learning module
consisting of a GNN for spatial embedding learning and a TCN for
temporal embedding learning. Different from ST-GCN, the input is
the whole BOLD signals and the TCN is employed to capture the
signal features. These two works focus on the dynamics of signal-level
temporal signal, however, the structure of the brain network is still
considered to be stationary, which implies that the variation of con-
nections between brain regions is ignored. To solve it, Wang et al. [24]
proposed an end-to-end temporal dynamics learning (TDL) method
for the diagnosis of brain disease based on dynamic FCs. They first
transformed rs-fMRI time series into dynamic FCs using overlapping
sliding windows, then introduced a group-fused Lasso regularizer to
capture the global temporal dynamics of these networks. However, the
major limitation of TDL is the linear relationship for modeling dynamic
brain networks. Modeling the correlation among brain regions or the
correlation among temporal graph structures with nonlinear functions
is able to provide enhanced flexibility and the potential ability to better
capture the complex relationship. For example, Lin et al. [25] proposed
a convolutional recurrent neural network (CRNN) which uses convo-
lution to construct brain network and then extract sequential features
via LSTM. Yin et al. [26] developed a dynamic graph representation
learning framework based on GNN and LSTM to model the non-linear
interrelationship among related nodes. The contrast between our model
and theirs is that they learn features based on a clear separation of
spatial and temporal feature learning stages, neglecting the temporal
interaction of the spatial regions, while ours learns spatial and temporal
features simultaneously.

Although the most dynamic brain network analysis methods
(Fig. 1(c)) are able to model both the spatial and temporal features,
there are still some drawbacks: (1) All of them only consider either
signal-level temporal dynamics or dynamic FC-level temporal dynam-
ics, failing to model both of them simultaneously; (2) They ignore
the issues of the irrelevant correlations in each brain network and
the inconsistency across brain networks; (3) Few work combines the
network-based feature learning and the training of the classifier into a

unified framework.
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Fig. 3. The illustration of dynamic brain network construction from rs-fMRI images of the 𝑖th subject. To construct the dynamic brain networks, we divide the whole BOLD signals
into small sequences via the sliding window with length 𝐿 and stride 𝑆, and finally generate the temporal graphs series 𝐺(𝑖)

1 , 𝐺(𝑖)
2 ,… , 𝐺(𝑖)

𝑇 of the 𝑖th subject.
Fig. 4. Illustration of data augmentation for training and testing. (a): For each subject for training, it is divided into 𝑄 sub-sequences without overlapping. Each sub-sequence is
labeled with the same class label with the subject. (b): For each unseen subject, the prediction result is voted by the results of the multiple sub-sequences.
3. Method

This section first introduces the problem statement of our tasks
in Section 3.1 and then presents the proposed models in detail. In
Section 3.2, the construction of dynamic brain networks is introduced.
Section 3.3 shows the data augmentation method we used. Then in
Sections 3.4 and 3.5, we present the modules of the attention based
graph pooling and the dual temporal graph learning (DTGL). We
discuss an ensemble strategy in Section 3.6. In addition, the variant
method for clustering, named BrainTGL-C, is introduced in Section 3.7.
Finally, we conclude the theoretical contributions in Section 3.8.

3.1. Problem statement

Formally, given the rs-fMRI time-series data 𝑋 = {𝑥(𝑖)1 , 𝑥(𝑖)2 ,… ,
𝑥(𝑖)𝑛 }𝑁𝑖=1 and their corresponding labels 𝑌 = {𝑦1, 𝑦2,… , 𝑦𝑁}. Note that
𝑥(𝑖)𝑗 ∈ R𝑚 represent the BOLD signal series of the 𝑗th ROI, 𝑗 ∈
{1, 2,… , 𝑛}, 𝑦𝑖 ∈ {−1, 1}, 𝑚 is the variable dimension, 𝑁 is the amount
of training samples and 𝑛 is the amount of brain regions. We introduce
a graph sequence to model the spatial–temporal graph structure for
each subject. Let  = {𝐺(1)

𝑡 , 𝐺(2)
𝑡 ,… , 𝐺(𝑁)

𝑡 }𝑇𝑡=1 denote a dataset with
each sample representing as a dynamic brain network series, where
𝑇 denotes the number of time-series segments in rs-fMRI. Let 𝐺(𝑖)

𝑡
denote the graph at the 𝑡th segment of the 𝑖th subject. Given a graph
𝐺𝑡 = {𝑉 ,𝑋𝑡, 𝐴𝑡}, 𝐴𝑡 ∈ R𝑛×𝑛 denotes the corresponding adjacency
matrix of 𝐺𝑡, 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑛} represents the set of nodes in 𝐺𝑡
and 𝑋𝑡 denotes the one-dimensional signals for the node set. In this
work, we choose the CC-200 atlas, which divides the brain into 200
functionally homogeneous regions. The adjacency matrix 𝐴𝑡 describes
the graph structure of the brain network by calculating the correlation
between each pair of brain regions with Pearson correlation coefficient
(PCC). We formulate our task as a graph classification task and learn a
mapping function 𝑓 ∶ {𝐺 }𝑇 → 𝑌 (see Fig. 2).
4

𝑡 𝑡=1
3.2. Dynamic brain network series construction

In our work, we assume that the temporal information in fMRI time-
series data benefits the disease diagnosis. As Fig. 3 shows, different
from the static brain network methods which construct brain network
by calculating the Person correlation with the whole BOLD signals, we
design a sliding window technique, which divides the BOLD signal of
each subject into many small segments of BOLD signal with a length
of 𝐿 and a stride of 𝑆, in order to sufficiently leverage the temporal
information from the BOLD signal. The next step is to construct the
adjacency matrix of the brain based on each small BOLD signal seg-
ment. For each small BOLD signal segment, the Person correlation is
calculated to generate individual adjacency matrix. Finally, we obtain
the dynamic brain network sequences for the training set with 𝑁
subjects:  = {𝐺(1)

𝑡 , 𝐺(2)
𝑡 ,… , 𝐺(𝑁)

𝑡 }𝑇𝑡=1.

3.3. Data augmentation

Training deep learning models often requires a large number of
samples to prevent overfitting. To alleviate the issue of insufficient
data, we adopt a data augmentation scheme before constructing the
dynamic brain network series. At first, we crop the input time courses
to a fixed sequence length for all subjects, since the time courses have
different lengths depending on the site. Then, we divide the whole
sequence of each subject into several short sub-sequences of BOLD time
series without overlap. The labels of the sub-sequences that are the
same as its subject. During the training stage, we feed all the sub-
sequences into the proposed BrainTGL model. At the testing stage, we
apply the trained BrainTGL on each sub-sequence of the unseen data,
and combine all the prediction scores by a voting scheme to produce a
final subject-level prediction. The whole data augmentation of training
data and test data is shown in Fig. 4.
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Fig. 5. The illustration of graph pooling for the coarsened graph generation.

.4. Attention based graph pooling

When fMRI time-series data is converted into the dynamic brain
etwork, it faces two problems: a large number of noisy connections
nd inconsistencies among the multi-site subjects. Graph pooling is a
ritical operation to coarsen an original graph with high level noisy
dges for graph representation learning in GCN. The graph pooling
rocedure aims to preserve the global topology structure in brain net-
orks and remove the noisy edges. In our work, we propose a temporal
raph pooling with attention mechanism where weights are determined
y GCN. Attention has been widely used in recent deep learning re-
earches. We formulate graph pooling as a cluster assignment problem
ith attention mechanism. By hiding the non-indicative edges and
ighlighting the indicative edges, the nodes of an original graph are
rouped into clusters. Formally, an original graph 𝐺 is transformed into
coarsened graph 𝐺̂ = {𝑉 , 𝐴̂} with a coarsened structure, where 𝑉

enotes the set of supernodes in 𝐺̂, 𝐴̂ ∈ R𝑐×𝑐 denotes the corresponding
adjacency matrix of 𝐺̂, 𝑛 denotes the number of nodes in 𝐺, and 𝑐
denotes the number of supernodes in 𝐺̂. To achieve it, we introduce
a learnable parameter 𝐹 ∈ R𝑛×𝑐 , which is optimized by our model
for learning the important scores of the nodes for each supernode. 𝐹 is
formally defined as:

𝐹𝑖𝑗 =
{

𝑠𝑖, 𝑖 ∈ 𝑆𝑁𝑗
0, 𝑖 ∉ 𝑆𝑁𝑗

(1)

where 𝑠𝑖 denotes the importance score of each node 𝑣𝑖 in graph 𝐺.
With the optimized 𝐹 , we obtain a set of clusters as supernodes
𝑉 = {𝑆𝑁1, 𝑆𝑁2,… , 𝑆𝑁𝑐} and the weighted adjacency matrix of the
supergraph 𝐴̂ = 𝐹 𝑇𝐴𝐹 ∈ R𝑐×𝑐 . Then the nodes of a cluster are pooled
as one supernode to produce a coarsened graph as Fig. 5 shown. The
superedge between supernodes is the aggregation of edges multiplying
the node importance. Each superedge 𝑒𝑖𝑗 in 𝐴̂ is defined as 𝑠𝑖 ∗ 𝑤𝑖𝑗 ∗ 𝑠𝑗 ,
where 𝑤𝑖𝑗 denotes the weight of edge 𝑒𝑖𝑗 in 𝐴.

Therefore, the learned edge weights help us identify the indicative
edges. It is able to construct a coarsened and clean graph structure
with only important edges by highlighting the critical connections and
removing the irrelevant connections. Meanwhile, 𝐹 is shared among
all the graphs (brain networks) and achieved through learning from a
group level. In summary, the advantage of our attention based graph
pooling method is to group the nodes of the whole graph into some
clusters by hiding the non-indicative connections and highlighting the
task-relevant connections. It allows the model to focus more on task-
relevant nodes of graphs for improving the downstream tasks, e.g. clas-
sification or clustering. Finally, the noisy connections are removed and
the consistent coarsened temporal graphs are generated.
5

3.5. Dual temporal graph learning

To sufficiently model the spatio-temporal patterns of the brain
activity, we propose a spatio-temporal modeling method called dual
temporal graph learning (DTGL) that consists of S-RL module and TG-
RL module to fully learn temporal characteristics in fMRI data from
two aspects: one-dimensional BOLD signals and multivariable temporal
graphs, respectively. It is quite different from the previous work.

Firstly, to learn the temporal embedding from the one-dimensional
BOLD signal, we propose a signal representation learning (S-RL) mod-
ule via a stack of convolutional layers. The temporal embedding of node
is learned after 𝑙 steps of convolutional layers as follows:

𝑒(𝑙+1)(𝑢) =
𝑈−1
∑

𝑠=0
𝑒(𝑙)(𝑢 − 𝑠) ∗ (𝑙)(𝑠) (2)

where (𝑙) is a convolutional kernel of 𝑙th layer with a kernel size of
𝑈 and 𝑢 denotes the elements in BOLD signal. The initial embedding of
each supernode is obtained with a simple max pooling on the temporal
embedding of nodes within the corresponding supernode.

Long short-term memory (LSTM) is a feedback deep learning archi-
tecture proposed to solve the poor learning ability of RNNs in longer
sequences because of the vanishing gradient problem. A standard LSTM
unit consists of a cell (𝐶𝑡), an input gate (𝐼𝑡), an output gate (𝑂𝑡) and
a forget gate (𝐹𝑡). However, there are two problems for the traditional
STM:

(1) the fully connected operator within LSTM ignores the spatial
orrelation;

(2) the fixed skip length within LSTM is constrained due to its
nability to take advantage of the dependencies with variable lengths.

To solve these limitations, we design a temporal graph represen-
ation learning (TG-RL) module to model temporal characteristics at
he graph level. To this end, we combine the graph convolution with
he LSTM model to model the spatio-temporal representation for the
ynamic brain networks effectively. The TG-RL module also has three
ates: the input gate, the forget gate, and the output gate. This module
s fed with the temporal coarsened graph series, which contain the
nitial node embedding obtained by Eq. (2). In the module, the LSTM
omponent is adopted to learn the temporal embedding of all the
ynamic coarsened graphs within a dynamic network series. For each
oarsened graph, the GCN component is applied to capture the graph
tructural properties of nodes as well as the relationship between them.
ence, the operation of each gate is a stack of graph convolutional lay-
rs to exploit the spatial relationships between brain regions according
o the graph structures learned by the graph pooling. Furthermore, we
ropose a multi-skip scheme in the TG-RL module to solve them via
multi-skip combination to capture multi-level temporal information

or long and short hops. With the multi-skip scheme, the TG-RL cell
ontains three inputs: 𝐻𝑡−𝑝, 𝐺̂𝑡 and 𝐸

𝑡 , where 𝐻𝑡−𝑝 denotes the hidden
state obtained in (𝑡−𝑝)-th step, 𝑝 is the number of hidden cells skipped
through, 𝐺̂𝑡 is the 𝑡th graph in the dynamic graph series and 𝐸

𝑡 is the
corresponding features of the 𝑡th graph in the input graph series. The
input, hidden state and cell memory of TG-RL are all graph-structure
rather than vectors in the traditional LSTM. The updating process is
defined as

𝐈𝐧𝐩𝐮𝐭𝐆𝐚𝐭𝐞 ∶ 𝐼𝑡 = 𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝑊𝑖 ∗ 𝐆𝐜𝐨𝐧𝐯(𝐺̂𝑡) + 𝑊̂𝑖 ∗ 𝐆𝐜𝐨𝐧𝐯(𝐻𝑡−𝑝)) + 𝑏𝑖 (3)
𝐨𝐫𝐠𝐞𝐭𝐆𝐚𝐭𝐞 ∶ 𝐹𝑡 = 𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝑊𝑓 ∗ 𝐆𝐜𝐨𝐧𝐯(𝐺̂𝑡) + 𝑊̂𝑓 ∗ 𝐆𝐜𝐨𝐧𝐯(𝐻𝑡−𝑝)) + 𝑏𝑓

(4)
𝐮𝐭𝐩𝐮𝐭𝐆𝐚𝐭𝐞 ∶ 𝑂𝑡 = 𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝑊𝑜 ∗ 𝐆𝐜𝐨𝐧𝐯(𝐺̂𝑡) + 𝑊̂𝑜 ∗ 𝐆𝐜𝐨𝐧𝐯(𝐻𝑡−𝑝)) + 𝑏𝑜

(5)
𝐧𝐩𝐮𝐭𝐌𝐨𝐝𝐮𝐥𝐚𝐭𝐢𝐨𝐧 ∶ 𝑈𝑡 = 𝐫𝐞𝐥𝐮(𝑊𝑐 ∗ 𝐆𝐜𝐨𝐧𝐯(𝐺̂𝑡) + 𝑊̂𝑐 ∗ 𝐆𝐜𝐨𝐧𝐯(𝐻𝑡−𝑝)) + 𝑏𝑐

(6)

𝐞𝐥𝐥𝐌𝐞𝐦𝐨𝐫𝐲 ∶ 𝐶𝑡 = 𝐓𝐚𝐧𝐡(𝐼𝑡 ∗ 𝑈𝑡 + 𝐹𝑡 ∗ 𝐶𝑡−𝑝) (7)

𝐮𝐭𝐩𝐮𝐭 ∶ 𝐻 = 𝑂 ∗ 𝐓𝐚𝐧𝐡(𝐶 ) (8)
𝑡 𝑡 𝑡
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Fig. 6. The illustration of multiple skip connection with variable lengths. 𝑃 indicates the skip length of TG-RL.
where 𝐼𝑡, 𝐹𝑡, 𝑂𝑡, 𝑈𝑡, 𝐻𝑡 and 𝐶𝑡 are input gate, forget gate and output
gate like LSTM, modulated input, the hidden state and cell memory,
respectively. All of them are also graph-structured data. 𝑊𝑖, 𝑊𝑓 , 𝑊𝑜,
𝑊𝑐 , 𝑊̂𝑖, 𝑊̂𝑓 , 𝑊̂𝑜 and 𝑊̂𝑐 are learned weights of different gates. 𝑏𝑖, 𝑏𝑓 ,
𝑏𝑜 and 𝑏𝑐 are the bias vector parameters of gates respectively.

With the node embedding matrix 𝐸
𝑡 and the corresponding adja-

cency matrix 𝐴̂𝑡 of 𝐺̂𝑡, the graph convolution 𝐆𝐜𝐨𝐧𝐯(⋅) in 𝑙th layer can
be defined as:

𝐸(𝑙+1)
𝑡 = 𝐆𝐜𝐨𝐧𝐯(𝐺̂𝑡) = 𝐫𝐞𝐥𝐮(𝐴̂𝑡𝐸

(𝑙)
𝑡 𝑊 (𝑙)

𝐺 ) (9)

where 𝑊 (𝑙)
𝐺 is a learnable graph convolution weight matrix of 𝑙th layer,

𝐸(𝑙+1)
𝑡 is the node embedding matrix computed after 𝑙 steps of graph

convolution. Noting that 𝐸(0)
𝑡 is the graph initial embedding of 𝐺̂𝑡

which is equal to 𝐸𝑡, each item of which is obtained by Eq. (2).
When we choose multiple skip lengths (𝑝 = 1, 2,… , 𝑃 ), our TG-RL

is able to capture long-term dependencies with variable lengths in the
temporal graph series. From Fig. 6, it can be seen that:

• When 𝑃 = 1 (the skip length is 1), thus the final output is
𝐻̂ (1)

𝑇 = 𝑊 (1)
𝑇 𝐻 (1)

𝑇 ;
• When 𝑃 = 2 (the skip length is 2), thus the final output is
𝐻̂ (2)

𝑇 = 𝑊 (2)
𝑇 𝐻 (2)

𝑇 +𝑊 (2)
𝑇−1𝐻

(2)
𝑇−1;

• When 𝑃 = 3 (the skip length is 3), thus the final output is
𝐻̂ (3)

𝑇 = 𝑊 (3)
𝑇 𝐻 (3)

𝑇 +𝑊 (3)
𝑇−1𝐻

(3)
𝑇−1 +𝑊 (3)

𝑇−2𝐻
(3)
𝑇−2;

where 𝐻 (1)
𝑇 , 𝐻 (2)

𝑇 and 𝐻 (3)
𝑇 are the outputs of the 𝑇 th step with different

skip lengths in our TG-RL.
Finally, we combine the multiple outputs of TG-RL with multiple

skip connections with a dense layer to produce a final embedding as
follows:

𝐻̂𝐶
𝑇 =

𝑃
∑

𝑝=1

𝑇−𝑝+1
∑

𝑖=𝑇
𝑊 (𝑝)

𝑖 𝐻 (𝑝)
𝑖 + 𝑏 , (10)

where 𝐻 (1), 𝐻 (2), . . . , 𝐻 (𝑃 ) are the outputs with ‘‘multi-skip’’ connec-
tions and 𝑊 (𝑝) are learnable matrices.

3.6. Ensemble

The hyperparameter of window length influences the performance
of our algorithm. It is time-consuming to find an optimal solution. To
alleviate this, we adopt a multi-time window ensemble strategy. As
shown in Fig. 7, we train multiple BrainTGLs on the temporal graph
series with different window lengths. Finally, these trained models are
6

combined to achieve a final prediction with a voting scheme.
3.7. Variation of braintgl for unsupervised clustering

Apart from the modeling of dynamic FC characteristic, subtype
identification by rs-fMRI also draws increasing attention in the neuro-
science community as a disease analysis. Unsupervised clustering has
been proven to be useful in the analysis of subtypes and shows great
promise for application to brain disease. We extend our BrainTGL to an
unsupervised learning framework, named BrainTGL-C. Our BrainTGL-
C incorporates the spatial–temporal graph embedding learning and
cluster assignments learning into an end-to-end deep learning model.
The clustering framework iteratively groups the samples with a hier-
archical clustering algorithm, and uses the subsequent assignments as
supervision labels to learn the parameters of the BrainTGL. Our network
structure is shown in Fig. 8. The framework is mainly divided into three
stages: (a) spatial–temporal graph embedding learning, (b) hierarchical
clustering and (c) fine-tuning the data with pseudo-labels.

More specifically, we initialize all pseudo labels at the beginning
of each iteration until the quality of pseudo labels stabilizes and the
model performance no longer improves. Specifically, for each iteration,
at the beginning of hierarchical clustering, we regard 𝑁 instances as
𝑁 different identities and initialize all pseudo labels. We calculate
all pairwise distance between instances in the training dataset and
generate a 𝑁 × 𝑁 distance matrix. According to distance matrix and
clustering distance measurement, we will merge the nearest clusters in
each step until the cluster number 𝐾 is achieved. We regard samples in
the same cluster to have the same pseudo labels, and generate pseudo
labels to guide model training in the end. We introduce cross-entropy
loss as the objective function of the clustering framework.

3.8. Theoretical contribution

Modeling spatio-temporal dynamics in functional brain networks
is critical for underlying the functional mechanism of neurological
disorders including ASD, MDD and BD. The current work faces two
challenges involving: how to effectively learn the spatio-temporal data
representation for training a predictive diagnostic model, and how to
capture the critical graph structure for exploring interpretability in the
brain diseases.

(a) Feature learning for spatio-temporal data
Spatio-temporal embedding learning is becoming growingly impor-

tant in the big data era with the increasing availability in various
domains including environment and climate (e.g. wind prediction and
precipitation forecasting), public safety (e.g. crime prediction), intel-
ligent transportation (e.g. traffic flow prediction), human mobility
(e.g. human trajectory pattern mining). However, most sequential mod-

els just emphasize the dependencies among sequence nodes, ignoring
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Fig. 7. An ensemble of BrainTGL with multiple window parameters for sliding windows.
Fig. 8. The framework of BrainTGL-C. (a): Spatial–temporal graph embedding learning based on the BrainTGL. (b): Hierarchical graph clustering. (c): Fine-tuning training with
pseudo-labels. It clusters the graph embeddings from BrainTGL and generates the pseudo-labels. Finally, the model is optimized for supervised learning by the pseudo-labels
generated from the clustering.
other correlations like spatial and temporal relations among them.
In the study of brain network analysis, there are complicated co-
occurrence relationships between brain regions across the dynamic
time segments. We argue that these spatial–temporal relationships are
essential for learn the robust representation. In this study, we propose
a unified model which is capable of handling spatio-temporal data for
capturing the dynamic functional connectivity. Compared with LSTM,
the inner operator of TG-RL is graph convolutional calculation. Due
to the graph convolutional operation within our TG-RL, both the cell
memory and hidden state are able to capture temporal dynamics and
spatial structural information. Our model can not only capture discrimi-
native features in spatial configuration and temporal dynamics, but also
explore the co-occurrence relationship between spatial and temporal
domains. Moreover, it is worth noting that our model is a general and
effective framework for learning representation of temporal data with
graph structure. Furthermore, our model is a more efficient network
capable of modeling spatio-temporal data at a lower computational
cost.

(b) Graph structure learning for the graph data with complex struc-
ture

Graph Convolutional Networks (GCNs) are widely used for analyz-
ing graph-structured data because of their ability to exploit the rich
information inherent in the graph structures and attributes. However,
it is inevitable that the provided graph is incomplete and noisy, re-
sulting in inaccurate predictions, which necessitates learning robust
representations for real-world problems (e.g. node classification, rec-
ommendation, information retrieval and medical analysis). To alleviate
the issue of complex structure in brain networks, we introduce graph
structure learning into the GCN model to highlight the critical connec-
tions and remove the irrelevant connections via an attention pooling
with a supervision scheme. The aim is to learn a critical graph struc-
ture and generate more robust and biologically meaningful functional
connections. Another problem is that there always exists inter-site
heterogeneity in the multi-site data, which is always ignored by the
traditional GCN model. In the ABIDE dataset, there exists 17 sites,
where the image contrast, resolution and noise levels between sites
are different. The inter-site variation in the multi-center data hinders
the direct application of the traditional brain network embedding
7

learning methods. Training a single predictive model on a multi-center
dataset is more challenging to capture the heterogeneous data, and
this inconsistency of brain network structures limits the exploration
of the effective biomarkers. Our attention based pooling allows the
graph structure learning to be aware of the group level for solving the
inter-site variation issue. The learned consistent graph structure by our
proposed graph structure learning enables our framework to provide
an interpretable framework. Moreover, our proposed graph structure
learning is a general learning model for graph data, not limited to brain
network.

4. Experiments

4.1. Datasets and environment

We evaluated our proposed framework on four challenging datasets
for graph classification and clustering tasks: HCP (Human Connectome
Projects dataset) and ABIDE (Autism Brain Imaging Data Exchange
dataset), NMU-MDD (Major depressive disorder datasets collected by
Nanjing Medical University) and NMU-BD (Bipolar disorder datasets
collected by Nanjing Medical University).

ABIDE: The ABIDE database contains 1112 subjects, which are
collected from 17 acquisition sites. After the preprocessing, we obtained
871 high-quality rs-fMRI, comprising 403 individuals with ASD aged
18.069±8.415 and 468 normal controls aged 17.321±7.343. We further
selected 512 individuals whose sequence length of ROIs’ corresponding
BOLD time-series is between [176, 250].

HCP: Human Connectome Project (HCP) S1200 contained 1096
young adults with the rs-fMRI data. The first session for each subject is
used and five rs-fMRI data with less than 1200 frames are excluded. It
results in the dataset containing 498 females aged 29.559±3.6098 and
593 males aged 27.895±3.6103. The cortical surface was parcellated
into 22 major brain regions.

Center NMU dataset: The center NMU (Nanjing Medical Univer-
sity) dataset is provided and permitted for use by Nanjing Medical
University. In the process of data pre-processing, we deal with data by
using dpabi and divide the whole brain into 90 brain regions based on
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Fig. 9. The ROC of multiple computing methods.
Table 1
The information regarding the hardware environment in our experiments.

Category Specifications

System Ubuntu 20.04.3 LTS (GNU/Linux 5.13.0-30-generic x86_64)
CPU 2 × Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz 8-core
Memory 64 GB
GPU 4 × NVIDIA GeForce GTX 1080 8G

Automated Anatomical Labeling (AAL) for analysis. They included spa-
tial normalization to Echo Planar Imaging (EPI) template of standard
Montreal Neurological Institute (MNI) space (spatial resolution 3 mm
× 3 mm × 3 mm), spatial and temporal smoothing with a 6 mm ×

mm × 6 mm Gaussian kernel and filter processing by adopting 0.01–
.08 Hz low-frequency fluctuations to remove interference signals. The
ataset included 246 health controls (152 females and 94 males, aged
6.89±6.14), 181 MDDs (138 females and 43 males, aged 16.97±5.01)
nd 146 BDs (103 females and 43 males, aged 17.24±4.03), who were
canned at a single site with identical inclusion and exclusion criteria.
n our experiments, we divide the NMU dataset into NMU-MDD (246
Cs and 181 MDDs) and NMU-BD (246 HCs and 146 BDs) datasets.

We implement our model in PyTorch, and use a machine equipped
ith four GPUs to accelerate the model training. The details are shown

n Table 1.

.2. Comparison with the prior works on the brain network classification

To evaluate the effectiveness of the proposed BrainTGL and
rainTGL-en, which is the ensemble model of multiple BrainTGLs
n the temporal graph series with different window lengths, on the
raph classification on the dynamic brain network, we compared
ur proposed method with the current state-of-the-art approaches on
BIDE and HCP including: SVM, LSTM, GCN[4], GroupINN [2],
SDDiagnet [7], ST-GCN [10] and CNN-GCN [11]. For both the
MU-MDD and NMU-BD, we compared our BrainTGL model with the
ompeting approaches including: GroupINN, ST-GCN, ASDDiagnet
nd BrainnetCNN [27].

In our experiments, we employed a 5-fold cross-validation to eval-
ate our methods. The results of the comparisons in terms of accuracy,
UC, sensitivity and specificity are reported in Tables 2 and 3. The area
nder the receiver operating characteristic (ROC) curves are further
lotted in Fig. 9. We can see that our methods can consistently and
ubstantially beat the previous brain network classification methods
n both tasks. Our method BrainTGL-en obtained the accuracies of
8

Table 2
Performance comparison of various methods on HCP dataset and ABIDE dataset, where
the colors of red and blue denote the top two best results, respectively.

Dataset Method AUC (%) ACC (%) SEN (%) SPE (%)

HCP

SVM 62.2 ± 1.29 61.5 ± 1.26 64.1 ± 1.31 61.1 ± 1.20
LSTM 64.1 ± 3.18 64.3 ± 2.99 62.9 ± 3.01 65.6 ± 2.87
GCN[4] 64.6 ± 1.36 65.1 ± 1.93 62.4 ± 1.86 67.8 ± 1.89
GroupINN [2] 68.8 ± 2.19 69.3 ± 2.32 63.0 ± 1.14 74.6 ± 3.90
ST-GCN [10] 76.5 ± 2.21 76.3 ± 1.72 68.3 ± 1.91 83.9 ± 1.77
CNN-GCN [11] 62.3 ± 2.64 61.1 ± 1.36 60.5 ± 2.92 68.2 ± 1.69
BrainTGL 79.9 ± 2.35 80.0 ± 2.3 79.4 ± 1.71 80.6 ± 1.89
BrainTGL-en 81.1 ± 1.96 82.8 ± 1.61 79.8 ± 1.98 83.2 ± 1.74

ABIDE

SVM 59.3 ± 1.30 61.1 ± 1.23 59.0 ± 1.22 58.7 ± 1.23
LSTM 60.9 ± 3.22 61.4 ± 4.50 58.8 ± 3.89 63.5 ± 4.11
GCN[4] 63.5 ± 1.22 62.7 ± 2.19 59.7 ± 2.04 61.3 ± 1.92
GroupINN [2] 63.4 ± 2.40 63.4 ± 2.35 63.6 ± 1.74 63.2 ± 1.50
ST-GCN [10] 59.0 ± 1.43 59.2 ± 2.12 54.9 ± 1.56 63.2 ± 1.91
ASDDiagnet [7] 64.0 ± 2.16 67.5 ± 2.3 62.3 ± 1.31 67.4 ± 2.91
BrainTGL 65.3 ± 1.41 65.4 ± 1.68 62.6 ± 1.88 68.1 ± 1.79
BrainTGL-en 67.6 ± 1.52 67.8 ± 1.66 62.2 ± 1.92 72.9 ± 1.86

67.8%, 82.8%, 73.2%, 72.0% on ABIDE, HCP, NMU-MDD and NMU-
BD, respectively. In addition, it can be seen that our model can achieve
a comparable performance without the ensemble scheme with the
accuracies of 65.4%, 80.0%, 69.8%, 68.0%, respectively. Specifically,
compared with the traditional method SVM, BrainTGL achieves a bet-
ter performance, indicating the effective capability of deep learning
methods. Compared with the basic GCN or LSTM, a large margin of
about 14.9% and 15.7% improvement on the HCP dataset. About 2.7%
and 4.0% improvements have been achieved on the ABIDE dataset. The
remarkable results imply the effectiveness of appropriately integrating
GCN with LSTM for modeling the spatio-temporal data. GroupINN,
which focuses on the spatial graph convolution, potentially neglects the
sufficient temporal information hidden in the rs-fMRI. Compared with
CNN-GCN and ST-GCN, which also focus on the spatio-temporal model-
ing, our proposed methods perform better on all the datasets. The main
reasons are: (1) they ignore the complicated and inconsistent graph
structure within the multi-center subjects, which poses a significant
challenge to learn a good representation; (2) they neglect the graph-
level temporal dynamics when capturing the signal-level temporal dy-
namics in the BOLD signal. In summary, compared to the competing
methods, our proposed methods provide more discriminative and com-
prehensive information by jointly considering the potential relations of
different brain regions in both spatial and temporal dimensions from

the perspectives of the graph level and signal level.
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Table 3
Performance comparison of various methods on NMU-MDD dataset and NMU-BD dataset, where the colors of red and blue
denote the top two best results, respectively.

Dataset Method AUC (%) ACC (%) SEN (%) SPE (%)

NMU MDD

GroupINN [2] 63.6 ± 1.54 64.5 ± 1.29 69.4 ± 1.32 64.8 ± 1.62
ST-GCN [10] 53.1 ± 1.29 57.8 ± 2.32 51.2 ± 1.41 54.5 ± 1.66
ASDDiagnet [7] 62.4 ± 1.57 66.8 ± 2.13 65.9 ± 2.46 69.3 ± 2.41
BrainnetCNN [27] 65.8 ± 1.79 67.9 ± 2.27 67.5 ± 1.55 50.6 ± 2.42
BrainTGL 66.2 ± 2.26 69.8 ± 2.16 68.1 ± 1.95 70.6 ± 1.66
BrainTGL-en 68.9 ± 1.14 73.2 ± 1.93 70.2 ± 1.47 78.0 ± 1.51

NMU BD

GroupINN [2] 61.2 ± 1.51 65.9 ± 2.21 66.1 ± 1.63 67.1 ± 2.42
ST-GCN [10] 56.1 ± 2.32 59.7 ± 2.64 53.5 ± 1.93 61.0 ± 1.87
ASDDiagnet [7] 70.1 ± 3.21 71.2 ± 2.33 67.5 ± 1.73 68.3 ± 1.54
BrainnetCNN [27] 64.5 ± 1.77 68.8 ± 2.28 64.4 ± 1.62 51.4 ± 1.75
BrainTGL 60.1 ± 1.34 68.0 ± 1.63 65.9 ± 1.51 68.8 ± 1.57
BrainTGL-en 70.8 ± 1.70 72.0 ± 1.52 76.1 ± 1.62 73.9 ± 1.69
Table 4
The ablation study on the ABIDE dataset. Aug. indicates the data augmentation, P. indicates the graph pooling and En. indicates the ensemble
strategy.

Method GCN LSTM P. Aug. DTGL En. ACC (%) SEN (%) AUC (%) SPE (%)

GCN
√

56.0 60.6 57.2 59.1
GCN-LSTM

√ √

58.4 59.1 58.8 57.1
DTGL

√

61.1 63.3 58.0 63.8
DTGL-aug

√ √

62.3 64.1 61.2 62.2
DTGL-aug-en

√ √ √

64.5 65.9 63.6 65.1
P-DTGL-aug(BrainTGL)

√ √ √

65.4 62.6 65.3 68.1
P-DTGL-aug-en (BrainTGL-en)

√ √ √ √

67.8 62.2 67.6 72.9
Table 5
The ablation study on the HCP dataset. Aug. indicates the data augmentation, P. indicates the graph pooling and En. indicates the ensemble
strategy.

Method GCN LSTM P. Aug. DTGL En. ACC (%) SEN (%) AUC (%) SPE (%)

GCN
√

59.0 62.2 58.6 55.1
GCN-LSTM

√ √

58.3 60.5 57.4 54.8
DTGL

√

71.3 71.3 71.0 70.8
DTGL-aug

√ √

73.7 64.4 81.8 81.4
DTGL-aug-en

√ √ √

75.4 67.9 80.1 81.7
P-DTGL-aug(BrainTGL)

√ √ √

80.0 79.4 79.9 80.6
P-DTGL-aug-en (BrainTGL-en)

√ √ √ √

82.8 79.8 81.1 83.2
4.3. Ablation study

To demonstrate the efficiency of our framework design, a careful
ablation study was conducted. Specifically, the comparison was con-
ducted between our method and the intermediate method or basic
method with a single component or a combination of multiple compo-
nents. The experimental results are reported in Tables 4 and 5. From the
tables, it can be seen that P-DTGL-aug-en (BrainTGL-en) yields the best
performance with respect to all the metrics. Moreover, we can see that
DTGL achieves better results than GCN-LSTM, which demonstrates that
the temporal relations and structural relations are complementary and
leads to the conclusion that a simple LSTM module cannot capture well
the temporal information in fMRI data. By comparing DTGL-aug and
DTGL, it can be clearly observed that the insufficient number of samples
in the dataset is one of the main factors hindering the performance
of our model. The data augmentation facilitates the learning of the
dynamic brain network and improves the discrimination capability of
deep learning models. Additionally, we can see that the proposed P-
DTGL-aug-en (BrainTGL-en) achieves better results than DTGL-aug-en,
confirming that graph pooling plays a crucial role in modeling dynamic
brain networks. At last, the results show that the ensemble strategy
provides improved performance to eliminate its determination of the
window size.

4.4. Discussion

4.4.1. The impact of attention graph pooling
We also apply 𝑡-SNE on the original brain network graphs and

pooled brain network graphs to measure the distribution of graphs on
9

the 2-dimensional space. The 𝑡-SNE results are shown in Fig. 10, with
each point representing a graph sample and different colors denotes the
graph samples from different acquisition sites. From Fig. 10(a), some
obvious semantically inconsistent samples are evident before graph
pooling. After graph pooling, as the distribution of Fig. 10(b) shows,
the inconsistency samples is significantly decreased.

4.4.2. The impact of the supernode number
In this subsection, we aim to answer the questions: Does the at-

tention based graph pooling solve the noisy connections in the brain
network and the data inconsistency in the multi-site dataset? To show
the comparison among the different supernode numbers of our model,
we employ BrainTGL with the supernode numbers from 5 to 20. The
ACC (%) performance is shown in Fig. 11. It can be found that the per-
formance is improved with the number of supernodes increasing until
8 supernodes, then it tends to decline. The result suggests that more
supernodes help capture critical graph structure better. Nevertheless,
too many supernodes will inevitably introduce noisy nodes and edges
to the model, leading to overfitting.

4.4.3. Comparison of pooling methods
There have also been attempts to design graph pooling methods for

learning hierarchical features that are crucial for graph representation
and classification.

DIFFPOOL [28]: DIFFPOOL is a graph pooling method that learns
a cluster assignment matrix over the nodes using the output of a GNN
model.
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Fig. 10. The embedded 𝑡-SNE representations of brain networks before and after the proposed graph pooling.
Fig. 11. The performance of the attention graph pooling with different supernode
numbers in BrainTGL.

SAGPool [29]: SAGPool is a graph pooling module that introduces
an attention mask process to capture the key nodes through a self-
attention mechanism.

AttPOOL [30]: AttPool is a graph pooling module that selects signif-
icant nodes for graph representation adaptively based on an attention
based mechanism.

The major differences among our pooling and the comparable pool-
ing methods are:

(1) Our proposed attention based graph pooling method achieves
information aggregation based on graph structural representation clus-
tering, while the DIFFPOOL, SAGPool and AttPOOL methods are based
on attention of node features.

(2) The DIFFPOOL, SAGPool and AttPOOL focus on the node selec-
tion in pooling while our method focuses on the aggregation of edges,
which are more critical for the brain network analysis.

Specifically, we replace the attention based graph pooling module
in our model with the pooling modules of DiffPOOL, SAGPool and
ATTPOOL, and keep the backbones and other parts of the networks the
same as our BrainTGL.

The results of the comparative graph pooling methods are shown
in Table 6. From the comparison of different pooling methods, we
can find that our graph pooling method which performs information
aggregation based on graph clustering during the pooling operation,
achieves better performance. It reveals that the information aggrega-
tion based on attention based graph clustering can be helpful for graph
spatio-temporal representation learning.

4.4.4. The impact of different skip lengths in TG-RL
To explore the effects of different values of skip length, we chose

four skip lengths: 1, 2, 3, 4 to train BrainTGL model on the ABIDE
10
Fig. 12. Performance of TG-RL with different lengths of skips.

Table 6
The comparison of the graph pooling methods on ABIDE dataset.

Method ACC (%) SEN (%) SPE (%) AUC (%)

DIFFPOOL [28] 61.2 ± 1.12 48.8 ± 1.20 72.8 ± 1.95 60.8 ± 1.96
SAGPool [29] 62.9 ± 1.70 54.0 ± 2.48 68.3 ± 2.22 63.4 ± 1.57
ATTPOOL [30] 61.6 ± 1.13 59.2 ± 1.84 64.7 ± 2.30 62.1 ± 2.55
BrainTGL 65.3 ± 1.61 65.4 ± 1.41 62.6 ± 1.88 68.1 ± 1.79

dataset. The result in Fig. 12 shows that the value of skip length has
a significant impact on the classification performance, which demon-
strates that it is an important factor for BrainTGL. Specifically, when
the skip length value is small, the temporal information cannot be
sufficiently captured. When the skip length value becomes larger, the
temporal information is prone to be inevitably lost. We find that when
the skip is 2, our model achieves the best performance, which shows
the appropriate skip length is capable of helping the model capture
appropriate temporal information.

4.4.5. The model complexity
The computational complexity is an important measure for pre-

dictive models. In this study, we evaluate the comparable models
in terms of the parameter number, FLOPs and training time on the
ABIDE dataset. Notably, It can be observed that our model is more
parameter-efficient compared with other models (ASDDiagnet, ST-GCN
and GroupINN) as shown in Fig. 13. BrainTGL has only 0.19M pa-
rameters, requiring less trainable parameters. Specifically, BrainTGL
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Fig. 13. The model parameters (Param), floating point operations (FLOPs) and training time of our BrainTGL model, vanilla GCN, ASDDiagnet, ST-GCN and GroupINN.
Fig. 14. The clustering result visualization of NMU-MDD dataset and NMU-BD dataset.
has 0.09M more parameters than GCN, but provides more stronger
performance. Compared with ASDDiagnet, BrainTGL requires less than
3% parameters of ASDDiagnet and reduced training time. Moreover,
BrainTGL also needs only 15% parameters of GroupINN and almost
the same training time. The comparison demonstrates that our model
achieves higher data utility with less parameters and training time,
hence it is more suitable as a spatio-temporal learning model for brain
disease analysis, especially when the sample size is limited. More-
over, the FLOPs of ST-GCN is 6850M, showing a high computational
complexity of spatio-temporal model in brain analysis of 200 brain
regions. Notably, the FLOPs of our model is much lower (only 9.62M)
compared to ST-GCN, implying that BrainTGL is a light-weight (i.e., less
parameters to be learned) model that is tailored for spatio-temporal
brain network with complex structure.

4.5. Disease subtype clustering analysis

In this work, we evaluated our BrainTGL-C on the NMU-MDD
dataset and the NMU-BD dataset, respectively. According to the pre-
vious study which concludes that there exists two possible subtypes
of MDD and BD [31], the cluster number 𝐾 is set to 2. The cluster
results are shown in Fig. 14. We obtained 130 MDD-A, 51 MDD-B for
181 MDD subjects, and 87 BD-A, 59 BD-B for 146 BD subjects through
the proposed clustering procedure.

To verify the validity of the clustering results, we conduct two classi-
11

fication tasks of each subtype (subclass) vs. normal controls. The results
of two classification tasks are shown in Tables 7 and 8, respectively. In
addition, to further evaluate the validity of the subtype identification
results, we compute the TN, FN, FP and TP of subtype-A and subtype-
B, to obtain the ACC, SEN and SPE of the mixed class MDD(A+B) or
BD(A+B) vs. normal controls. The results of MDD(A+B) and BD(A+B)
are shown in Tables 7 and 8. It shows that:

(1) It can be seen in Fig. 14 that our BrainTGL-C identifies the
inherent subtypes of NMU-MDD and NMU-BD, respectively. The result
indicates the effectiveness of our BrainTGL-C.

(2) From the classification result of MDD(A+B) or BD(A+B) vs.
normal controls, the deep learning methods GroupINN/BrainnetCNN/
ASDDiagnet achieve improvement of 7.8%/3.0%/4.3% and 8.2%/
4.5%/3.2% compared with the result of MDD or BD vs. normal controls,
respectively. It indicates that the clustered subtypes identified by our
BrainTGL-C are helpful for multiple classification models.

5. Limitations and future works

Although compelling, our model still has limitations: (1) we ap-
plied the attention based graph pooling to obtain clean and sparse
supergraphs containing important connections. However, the pooling
operation directly transforms the original graph into a coarsened graph,
leading to the loss of the structure information. How to learn a more
effective graph structure with maximally preserving the structure in-
formation will be the focus of future research. (2) Our model relies

on LSTM to capture sufficient temporal features. However, LSTM deals
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Table 7
Performance comparison of the various methods on the multiple binary classification tasks of MDD diagnosis on the NMU-MDD
dataset. The best value is bolded.

Method Task AUC (%) ACC (%) SEN (%) SPE (%)

GroupINN [2]

MDD-A vs. HC 65.3 ± 1.67 69.9 ± 2.69 64.4 ± 2.36 71.3 ± 2.34
MDD-B vs. HC 67.1 ± 2.90 75.6 ± 1.38 68.4 ± 0.83 82.2 ± 2.17
MDD(A+B) vs. HC – 72.3 ± 1.58 66.1 ± 1.69 78.7 ± 1.91
MDD vs. HC 63.6 ± 1.61 64.5 ± 2.90 69.4 ± 3.22 64.8 ± 6.25

BrainnetCNN [27]

MDD-A vs. HC 66.7 ± 2.12 68.9 ± 1.91 67.0 ± 3.34 65.5 ± 2.11
MDD-B vs. HC 69.8 ± 2.51 72.2 ± 2.14 69.7 ± 2.52 67.8 ± 2.35
MDD(A+B) vs. HC – 70.9 ± 1.89 69.0 ± 2.95 66.8 ± 2.31
MDD vs. HC 65.8 ± 1.93 67.9 ± 1.75 67.5 ± 1.63 50.6 ± 2.50

ASDDiagnet [7]

MDD-A vs. HC 66.4 ± 2.05 69.6 ± 1.36 66.0 ± 1.22 75.0 ± 1.87
MDD-B vs. HC 68.5 ± 1.94 72.8 ± 2.23 68.4 ± 2.32 75.4 ± 2.18
MDD(A+B) vs. HC – 71.1 ± 1.38 67.9 ± 1.81 75.1 ± 1.67
MDD vs. HC 62.4 ± 1.74 66.8 ± 1.43 65.9 ± 1.60 69.3 ± 1.41
Table 8
Performance comparison of the various methods on the multiple binary classification tasks of BD diagnosis on the NMU-BD
dataset. The best value is bolded.

Method Task AUC (%) ACC (%) SEN (%) SPE (%)

GroupINN [2]

BD-A vs. HC 61.5 ± 2.42 73.9 ± 2.59 61.8 ± 2.18 69.6 ± 2.94
BD-B vs. HC 63.1 ± 2.73 74.4 ± 2.33 60.4 ± 3.31 73.2 ± 2.15
BD(A+B) vs. HC – 74.1 ± 2.25 60.9 ± 2.09 71.4 ± 2.21
BD vs. HC 61.2 ± 2.12 65.9 ± 2.01 66.1 ± 1.94 67.1 ± 2.25

BrainnetCNN [27]

BD-A vs. HC 65.6 ± 2.13 72.7 ± 2.92 63.2 ± 2.36 65.4 ± 1.57
BD-B vs. HC 66.3 ± 3.24 74.0 ± 1.60 67.7 ± 2.31 68.6 ± 1.63
BD(A+B) vs. HC – 73.3 ± 1.53 66.0 ± 2.17 66.9 ± 1.45
BD vs. HC 64.5 ± 2.75 68.8 ± 2.57 64.4 ± 1.57 51.4 ± 1.75

ASDDiagnet [7]

BD-A vs. HC 69.6 ± 1.44 73.4 ± 2.56 67.8 ± 3.21 75.2 ± 3.01
BD-B vs. HC 71.3 ± 2.73 74.9 ± 2.61 68.6 ± 3.17 71.4 ± 2.62
BD(A+B) vs. HC – 74.4 ± 2.13 68.1 ± 2.56 73.8 ± 2.35
BD vs. HC 70.1 ± 3.15 71.2 ± 2.36 67.5 ± 2.60 68.3 ± 2.42
with the temporal information in a single direction, which limits our
model to sufficiently capture the bidirectional temporal associations
in the dynamic brain network series. Therefore, how to capture the
long-range dependencies within the temporal graphs is also a future
research direction. (3) The proposed BrainTGL have a number of
hyperparameters to be empirically chosen along with their architec-
ture. It can be a heavy burden for choosing the architecture and the
hyperparameter values for achieving an optimal performance. In most
cases, the default hyperparameters and architectures are used. To
solve the limitation of the manual hyperparameters and architectures,
how to automatically search the optimal hyperparameters and model
architectures based on the evolutionary neural architecture search
(NAS) will be the focus of future research. Leveraging the neural
architecture search methods can exploit the suitable architecture and
hyperparameters and further promote the model performance. There-
fore, we will conduct more detailed researches on how to improve
the spatio-temporal model architecture via NAS methods, including the
commonly used computational intelligence algorithms [32–34] such as
Monarch Butterfly Optimization (MBO) [35], Earthworm Optimization
Algorithm(EWA) [36], Moth Search (MS) [37] algorithm, Slime mould
algorithm (SMA) [38], hunger games search (HGS) [39] and so on.

6. Conclusion

In order to achieve a better dynamic graph embedding from brain
networks, we develop a temporal graph representation learning model
BrainTGL for dynamic brain networks. The proposed BrainTGL model
exploits the temporal characteristics in rs-fMRI data through the pro-
posed attention based graph pooling for removing noisy edges and dual
temporal graph learning LSTM for learning temporal characteristics in
fMRI data from two aspects. Furthermore, we propose an unsupervised
spatial–temporal graph clustering framework BrainTGL-C based on our
model to analyze the subtypes of brain disease. Extensive experiments
were conducted to evaluate the effectiveness of our models on both
graph classification and graph clustering tasks, which demonstrates the
12

advantage of our model over the state-of-the-art approaches.
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